
U1. Menu Utility Commands
    ViewIt provides several menu-related commands, most of which are designed to support
its system of "labeled" menu items and built-in Font, Size, Style, and Color menus.
Labeled Items
    Labeled menu items are menu items that have a "label ID" associated with them.   
Information about the menu item that is associated with each label ID is stored in a private
table maintained by ViewIt.    Entries are added or removed from this table using the SetItm
command.    (This is done by FaceIt, for example, when auto-loading main menus, where the
labeled items are ones with "#n" in their titles.)
    Any number of menu items can be associated with the same label ID, and SetItm can be
used to manipulate all items linked to the same label ID at once.    This makes it easy, for
example, to have multiple standard "Cut" items in multiple menus since each such Cut item
is associated with the same label ID (#13) and can be enabled, disabled, checked, etc., by a
single call to SetItm.
    Further information about the various types of label IDs supported by FaceWare modules
can be found in the FaceIt Guide under its "Menu Handling" topic.
FSSC Menus
    On DoInit, if ViewIt is in use then it initializes Font, Size, Style, and Color menus that are
loaded from MENU resources 1216-1219 having menuIDs 196-199.    These "FSSC" menus
are non-main menus that can be attached to hierarchical menu items in other menus.
Controls in ViewIt windows that support multiple text styles (such as this HelpCt control), for
example, will often support the FSSC menus (see the style menu at the top of this window).
    FaceIt and ViewIt automatically process (using SelFSC) menu selections from FSSC menus
and post the appropriate messages to control drivers.    The drivers then use FixFSC to
update the state of the FSSC menus.    This means that main programmers using FaceIt or
ViewIt will rarely need to call either SelFSC or FixFSC.
    Advanced Note: All FaceWare modules assume that the FSSC menus remain inserted in the
menu list at all times as non- main menus.    If your program switches menu bars using the
toolbox calls "ClearMenuBar" and/or "SetMenuBar", then these will also delete all non-main
menus, including the FSSC menus.    You will then need to reinsert these menus as non-main
menus using the menu handles stored in fRec:    fFontMenu, fSizeMenu, fStyleMenu, &
fColorMenu.

Name    Number    Parameters & Variables used
PopMen 123 a,b,c,d,uString,uMenuID,uMenuItem
    Executes the toolbox call PopUpMenuSelect where a = menuID, b = vertical position, c = Executes the toolbox call PopUpMenuSelect where a = menuID, b = vertical position, c =
horizontal position of the top, left corner of the menu (in local coordinates), and d is the itemhorizontal position of the top, left corner of the menu (in local coordinates), and d is the item
to be initially selected (ignored by palette menus).    uString, uMenuID, and uMenuItem to be initially selected (ignored by palette menus).    uString, uMenuID, and uMenuItem
return with the selected item text, menuID, and item number.return with the selected item text, menuID, and item number.
    NOTE:    It's unlikely that you'll ever need to use PopMen with ViewIt windows unless     NOTE:    It's unlikely that you'll ever need to use PopMen with ViewIt windows unless
attempting to pop up a special menu (such as a palette) in response to a click in an enabled attempting to pop up a special menu (such as a palette) in response to a click in an enabled
item.item.

SetItm 161    a,b,c,d,uResult
    The SetItm command can be used to manipulate menus and menu items in many differentThe SetItm command can be used to manipulate menus and menu items in many different
ways. It also supports "labeled" menu items (discussed above), and is used within all ways. It also supports "labeled" menu items (discussed above), and is used within all
modules that manipulate labeled menu items.modules that manipulate labeled menu items.
    a = menuID, resource ID, or MenuHandle of target menu*    a = menuID, resource ID, or MenuHandle of target menu*
            or use a = 0 to designate that b is a label ID number            or use a = 0 to designate that b is a label ID number
    b = menu operation or extent of operation    b = menu operation or extent of operation
        -4 = initialize menu**        -4 = initialize menu**
        -3 = delete (if necessary) and dispose of menu**        -3 = delete (if necessary) and dispose of menu**
        -2 = delete menu from menu list        -2 = delete menu from menu list
        -1 = initialize (if necessary) and insert into list**        -1 = initialize (if necessary) and insert into list**

          0 = apply to all menu items in menu***          0 = apply to all menu items in menu***
      > 0 = apply to this menu item number      > 0 = apply to this menu item number
            or a label ID number (if a = 0)            or a label ID number (if a = 0)
    c = menuID before which to insert new menu (if b = -1)†    c = menuID before which to insert new menu (if b = -1)†
            or menu item operation (if b > -1):            or menu item operation (if b > -1):
          1 = set checked state (d = 0 = uncheck, ≠ 0 = check)          1 = set checked state (d = 0 = uncheck, ≠ 0 = check)
          2 = set enabled state (d = 0 = disable, ≠ 0 = enable)          2 = set enabled state (d = 0 = disable, ≠ 0 = enable)
          3 = set item text (d = 0 or 1 = uString, 2 = uName, other = Pascal string address)          3 = set item text (d = 0 or 1 = uString, 2 = uName, other = Pascal string address)
          4 = set item mark (d = ASCII value of mark character)          4 = set item mark (d = ASCII value of mark character)
          5 = set item ICON (d = ICON ID = 257 to 511)          5 = set item ICON (d = ICON ID = 257 to 511)
          6 = set item reduced ICON (d = ICON ID = 257 to 511)          6 = set item reduced ICON (d = ICON ID = 257 to 511)
          7 = set item SICN (d = SICN ID = 257 to 511)          7 = set item SICN (d = SICN ID = 257 to 511)
          8 = set item style (d = 0 to 255)          8 = set item style (d = 0 to 255)
          9 = set item command character (d = ASCII value)          9 = set item command character (d = ASCII value)
        10 = link to hierarchical menu (d = menuID = 1 to 255)        10 = link to hierarchical menu (d = menuID = 1 to 255)
        11 = set item label ID (d = ± label ID)††        11 = set item label ID (d = ± label ID)††
        12 = delete item (d = -1) or insert item (d = 0 or 1 = uString, 2 = uName, other = Pascal        12 = delete item (d = -1) or insert item (d = 0 or 1 = uString, 2 = uName, other = Pascal
string address)†††string address)†††
    d = parameter for menu item operation    d = parameter for menu item operation
        (use d = 0 to undo operations 4 through 11)        (use d = 0 to undo operations 4 through 11)
All calls to SetItm return the MenuHandle of the target menu in uResult (or 0 if the menu wasAll calls to SetItm return the MenuHandle of the target menu in uResult (or 0 if the menu was
not found).    Also note that if one or more menus in the main menu bar are deleted/inserted not found).    Also note that if one or more menus in the main menu bar are deleted/inserted
or disabled/reenabled, then you should update the bar with a call to "DrawMenuBar" (We or disabled/reenabled, then you should update the bar with a call to "DrawMenuBar" (We
can't do this since we don't know when you're finished making changes that affect the can't do this since we don't know when you're finished making changes that affect the
appearance of the bar).appearance of the bar).
    To understand the power of SetItm, consider the case of a labeled menu item (#121) that     To understand the power of SetItm, consider the case of a labeled menu item (#121) that
your program needed to support in several different menus.    First, SetItm is called by FaceIt your program needed to support in several different menus.    First, SetItm is called by FaceIt
or ViewIt when initializing your menus, so your labeled items get registered properly.    You or ViewIt when initializing your menus, so your labeled items get registered properly.    You
can then change all instances of a label with a single call to SetItm. For example, to disable can then change all instances of a label with a single call to SetItm. For example, to disable
all instances of items with label ID 121, use,all instances of items with label ID 121, use,

FaceIt(nil,SetItm,0,121,2,0);FaceIt(nil,SetItm,0,121,2,0);
      Pascal      Pascal

FaceIt(0,SetItm,0,121,2,0);FaceIt(0,SetItm,0,121,2,0);
          /* C */          /* C */
 FaceIt(0,SetItm,0,121,2);                /* C++ */ FaceIt(0,SetItm,0,121,2);                /* C++ */

call FaceIt(0,SetItm,0,121,2,0)call FaceIt(0,SetItm,0,121,2,0)
 !FORTRAN !FORTRAN
where the menus affected would include all main menus, hierarchical or non-main menus, where the menus affected would include all main menus, hierarchical or non-main menus,
and menu controls in ViewIt modal and modeless windows.and menu controls in ViewIt modal and modeless windows.
    Another example of the power of SetItm is its use to quickly change the contents of an     Another example of the power of SetItm is its use to quickly change the contents of an
existing menu.    The code fragment that follows would completely change the contents of existing menu.    The code fragment that follows would completely change the contents of
the menu displayed by the menu control at position v2c5 in a ViewIt window opened with the menu displayed by the menu control at position v2c5 in a ViewIt window opened with
FWND 1000:FWND 1000:
• Pascal
 FaceIt(nil,GetCtl,1000,0,2,5); FaceIt(nil,GetCtl,1000,0,2,5);
 myMenu := ord(fRec.cHiData); myMenu := ord(fRec.cHiData);
 FaceIt(nil,SetItm,myMenu,0,12,-1); FaceIt(nil,SetItm,myMenu,0,12,-1);
 fRec.uString := 'Paste#16/V;Copy#14/C;Cut#13/X'; fRec.uString := 'Paste#16/V;Copy#14/C;Cut#13/X';
 FaceIt(nil,SetItm,myMenu,0,12,0); FaceIt(nil,SetItm,myMenu,0,12,0);
• FORTRAN• FORTRAN
 FaceIt(0,GetCtl,1000,0,2,5) FaceIt(0,GetCtl,1000,0,2,5)
 myMenu = fRec.cHiData myMenu = fRec.cHiData
 FaceIt(0,SetItm,myMenu,0,12,-1) FaceIt(0,SetItm,myMenu,0,12,-1)

 fRec.uString = 'Paste#16/V;Copy#14/C;Cut#13/X' fRec.uString = 'Paste#16/V;Copy#14/C;Cut#13/X'
 FaceIt(0,SetItm,myMenu,0,12,0) FaceIt(0,SetItm,myMenu,0,12,0)
where "myMenu" is used to store the MenuHandle of the menu associated with the control where "myMenu" is used to store the MenuHandle of the menu associated with the control
(see first note below), and the calls to SetItm first delete all items in the menu and then (see first note below), and the calls to SetItm first delete all items in the menu and then
replace them by the 3 standard items (with keyboard equiv.s "V", "C", and "X") passed in replace them by the 3 standard items (with keyboard equiv.s "V", "C", and "X") passed in
uString.uString.

SetItm Notes:SetItm Notes:
* Do not pass a resource ID or menuID when referring to menu controls within ViewIt windows since * Do not pass a resource ID or menuID when referring to menu controls within ViewIt windows since
each such control is given its own MenuHandle which is a copy of the linked MENU resource (use GetCtleach such control is given its own MenuHandle which is a copy of the linked MENU resource (use GetCtl
to get this MenuHandle in cHiData).    Also note that in cases where SetItm needs to generate a to get this MenuHandle in cHiData).    Also note that in cases where SetItm needs to generate a
resource ID from a menuID, it assumes the relationship:    resource ID = menuID + 900 (= FaceIt's resource ID from a menuID, it assumes the relationship:    resource ID = menuID + 900 (= FaceIt's
auto-load scheme for main program menus).auto-load scheme for main program menus).
** When initializing menus, ViewIt scans the menus for labeled items and processes the items.    When ** When initializing menus, ViewIt scans the menus for labeled items and processes the items.    When
disposing of menus, ViewIt removes the corresponding entries from its labeled item tables.    You can disposing of menus, ViewIt removes the corresponding entries from its labeled item tables.    You can
also use b = -4 with menus that are already initialized to get ViewIt to process their labeled items.also use b = -4 with menus that are already initialized to get ViewIt to process their labeled items.
*** If b = 0 (all items) and c = 2 (enable/disable) then the menu itself is enabled/disabled, not the *** If b = 0 (all items) and c = 2 (enable/disable) then the menu itself is enabled/disabled, not the
individual items within the menu.individual items within the menu.
† Use c = -1 to insert the menu as a non-main menu (or use a "+" or "-" as the first character of the † Use c = -1 to insert the menu as a non-main menu (or use a "+" or "-" as the first character of the
menu's title).menu's title).
†† When adding new label entries to its private tables, ViewIt does not check whether the entries †† When adding new label entries to its private tables, ViewIt does not check whether the entries
already exist, so do not call SetItm to assign an ID to the same item more than once.    You can, already exist, so do not call SetItm to assign an ID to the same item more than once.    You can,
however, pass an existing label ID in parameter b and a new value in d to change the label ID of all however, pass an existing label ID in parameter b and a new value in d to change the label ID of all
associated menu items.    For example,associated menu items.    For example,
 FaceIt(nil,SetItm,0,19,11,151); FaceIt(nil,SetItm,0,19,11,151);
would change the label ID of all items associated with ID #19 (the "Select All" standard item) to ID would change the label ID of all items associated with ID #19 (the "Select All" standard item) to ID
#151 (a program item).#151 (a program item).
††† Passing b = 0 can be used with d = -1 to delete all items in a menu, but passing b = 0 with d > -1 ††† Passing b = 0 can be used with d = -1 to delete all items in a menu, but passing b = 0 with d > -1
to insert items results in inserting items at the top of the menu (same as b = 1).    When inserting a to insert items results in inserting items at the top of the menu (same as b = 1).    When inserting a
new item, the string passed is interpreted in the same way as that done by the "AppendMenu" toolbox new item, the string passed is interpreted in the same way as that done by the "AppendMenu" toolbox
call (i.e., a single string can specify mulitiple items to add, as well as icon, mark, style, keyboard equiv.,call (i.e., a single string can specify mulitiple items to add, as well as icon, mark, style, keyboard equiv.,
and enabled status of each item), but items are added in the reverse order that they appear in the and enabled status of each item), but items are added in the reverse order that they appear in the
string.    Each item inserted or deleted is also checked for the presence of a label ID, and ViewIt's string.    Each item inserted or deleted is also checked for the presence of a label ID, and ViewIt's
private label table is updated accordingly.    Finally, note that this operation (c = 12) does not support private label table is updated accordingly.    Finally, note that this operation (c = 12) does not support
the use of label IDs (a = 0, b = label ID) to designate menu item positions.    Always use parameter a tothe use of label IDs (a = 0, b = label ID) to designate menu item positions.    Always use parameter a to
designate a specific menu when inserting or deleting items.designate a specific menu when inserting or deleting items.

GetItm    162    a,b,c
    Parameters a and b define a menu item in the same way as they are used with SetItmParameters a and b define a menu item in the same way as they are used with SetItm (if b
= 0, then b = 1 is used).    Information about this item is returned as,    Information about this item is returned as,
    uString = menu item text    uString = menu item text
    uMenuID = menuID number    uMenuID = menuID number
    uMenuItem = menu item number    uMenuItem = menu item number
    uResult = label number (±1 to ±7499, 0 if unlabeled)    uResult = label number (±1 to ±7499, 0 if unlabeled)
    uI1 = mark character (ASCII value)    uI1 = mark character (ASCII value)
    uI2 = ICON or SICN resID (257-511)    uI2 = ICON or SICN resID (257-511)
    uI4 = WindowPtr of old picture palette window (obsolete)    uI4 = WindowPtr of old picture palette window (obsolete)
    uStyle = menu item style    uStyle = menu item style
    uMenuHdl = MenuHandle    uMenuHdl = MenuHandle
where an empty string or zero is returned if the item is not found, and the label number in where an empty string or zero is returned if the item is not found, and the label number in
uResult will be negative if it was entered as such in the MENU resource.uResult will be negative if it was entered as such in the MENU resource.
    A typical use for this command might be to get the menuID and menu item number of an     A typical use for this command might be to get the menuID and menu item number of an
item specified by a label ID number (a = 0, b = label ID).    In this case you can also use item specified by a label ID number (a = 0, b = label ID).    In this case you can also use
parameter c to specify the nth instance of the labeled item that you are looking for.parameter c to specify the nth instance of the labeled item that you are looking for.

FixFSC    163    a,b,c,d
    Notifies ViewIt that its built-in Font, Size, Style, and/or Color (FSSC) menus need updating Notifies ViewIt that its built-in Font, Size, Style, and/or Color (FSSC) menus need updating

according to parameters a, b, c, and d.    Pass -1 for parameters to be ignored, and -2 to according to parameters a, b, c, and d.    Pass -1 for parameters to be ignored, and -2 to
uncheck all items in the corresponding menu (which will also occur if the parameter does notuncheck all items in the corresponding menu (which will also occur if the parameter does not
correspond to any item in the menu).    This command is most often used from within control correspond to any item in the menu).    This command is most often used from within control
drivers to update the state of the FSSC menus to reflect the current selection's text style anddrivers to update the state of the FSSC menus to reflect the current selection's text style and
color.color.
    a = font number OR address of Pascal string containing font name (outlining of sizes in     a = font number OR address of Pascal string containing font name (outlining of sizes in
Size menu is also updated)Size menu is also updated)
    b = size (12 pt. if b = 0)    b = size (12 pt. if b = 0)
    c = style = sum of following constants:    0 = Plain,    c = style = sum of following constants:    0 = Plain,
          1 = Bold, 2 = Italic, 4 = Underline, 8 = Outline,          1 = Bold, 2 = Italic, 4 = Underline, 8 = Outline,
          16 = Shadow, 32 = Condensed, 64 = Extended          16 = Shadow, 32 = Condensed, 64 = Extended
    d = address of RGB color OR old-style color constant:    d = address of RGB color OR old-style color constant:
          33 = black, 30 = white, 205 = red, 341 = green,          33 = black, 30 = white, 205 = red, 341 = green,
          409 = blue, 273 = cyan, 137 = magenta, 69 = yellow          409 = blue, 273 = cyan, 137 = magenta, 69 = yellow

SelFSC    164    a,b
    Processes an FSSC menu selection by comparing the chosen item with the current state of Processes an FSSC menu selection by comparing the chosen item with the current state of
the FSSC menus (set by calling FixFSC), where a is the item's menu ID and b is the item the FSSC menus (set by calling FixFSC), where a is the item's menu ID and b is the item
number.    If the selection would change the state of the FSSC menus, then uResult is number.    If the selection would change the state of the FSSC menus, then uResult is
returned with a non-zero value, and the new font, size, style, or color is placed in the currentreturned with a non-zero value, and the new font, size, style, or color is placed in the current
port's txFont, txSize, txFace, or fgColor fields (or rgbFgColor for color windows).port's txFont, txSize, txFace, or fgColor fields (or rgbFgColor for color windows).
    In the case of a style change, txFace is set to contain just the newly selected style (Plain     In the case of a style change, txFace is set to contain just the newly selected style (Plain
OR Bold OR Italic...) so that the selected style can be turned on or off without affecting the OR Bold OR Italic...) so that the selected style can be turned on or off without affecting the
other styles in the current text selection.other styles in the current text selection.
    This command is rarely used by either main programmers or module developers since     This command is rarely used by either main programmers or module developers since
FaceIt and ViewIt automatically preprocess most menu selections.FaceIt and ViewIt automatically preprocess most menu selections.

